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•Source code parsed to produce abstract syntax tree.

•Abstract syntax tree transformed to control flow graph.

•Data flow analysis operates on the control flow graph y p g p
(and other intermediate representations).



Abstract Syntax Tree (AST)y ( )

•Programs are written in textg

• as sequences of characters
• may be awkward to work with.

•First step: Convert to structured representation.

• Use lexer (like lex) to recognize tokens( ) g
• Use parser (like yacc) to group tokens structurally

• often produce to produce AST



Abstract Syntax Tree Exampley p

x := a + b; program;

y := a * b

p g

while=
While (y > a){

a := a +1;

w

block

=

x +

…

>a := a +1;

x := a + b

blockx

a b …=y a

} a +

a 1



ASTs

• ASTs are abstractASTs are abstract

• don’t contain all information in the program
• e.g., spacing, comments, brackets, parenthesis.• e.g., spacing, comments, brackets, parenthesis.

• Any ambiguity has been resolved
• e.g., a + b + c produces the same AST as • e.g., a + b + c produces the same AST as 

(a +b) + c.



Disadvantages of ASTsg

•ASTs have many similar formsASTs have many similar forms

• e.g., for while, repeat , until, etc

• e g  if  ?  switch• e.g., if, ?, switch

•Expressions in AST may be complex, nested

(42 * y) + ( z > 5 ? 12 * z : z +20)

•Want simpler representation for analysis

• … at least for dataflow analysis.



Control-Flow Graph (CFG)p ( )

•A directed graph where

•Each node represents a statement

•Edges represent control flowg p

•Statements may be•Statements may be

•Assignments x = y op z or x = op z

C  t t t    •Copy statements x = y

•Branches goto L or if relop y goto L

•etc



Control-flow Graph Examplep p

x := a + b;

y := a * b

While (y > a){While (y > a){

a := a +1;

x := a + b

}



Variations on CFGs

•Usually don’t include declarations (e.g. int x;).Usually don t include declarations (e.g. int x;).

•May want a unique entry and exit point.

•May group statements into basic blocks.
A b i  bl k i    f i t ti  ith  • A basic block is a sequence of instructions with no 
branches into or out of the block.



Control-Flow Graph with Basic Blocksp

X := a + b;

Y := a * b

While (y > a){While (y > a){

a := a +1;

   + bx := a + b

}

•Can lead to more efficient implementations

• But more complicated to explain so…

•We will use single-statement blocks in lecture



CFG vs. AST

•CFGs are much simpler than ASTsp

• Fewer forms, less redundancy, only simple 
expressions

•But, ASTs are a more faithful representation

• CFGs introduce temporaries
• Lose block structure of program

•So for AST,

• Easier to report error + other messages
• Easier to explain to programmer
• Easier to unparse  to produce readable code



Data Flow Analysisy

• A framework for proving facts about programA framework for proving facts about program

• Reasons about lots of little facts

• Little or no interaction between facts

• Works best on properties about how program • Works best on properties about how program 
computes

• Based on all paths through program• Based on all paths through program

• including infeasible paths



Available Expressionsp

•An expression e = x op y is available at a program 
i t  if 

p p y p g
point p, if 

• on every path from the entry node of the graph to node p, e 
is computed at least once, and

• And there are no definitions of x or y since the most recent 
occurance of e on the path

•Optimization
If an expression is available  it need not be recomputed• If an expression is available, it need not be recomputed

• At least, if it is in a register somewhere



Data Flow Facts

I  i   il bl ?•Is expression e available?

•Facts:

•a + b is available

•a * b is available

•a + 1 is available



Gen and Kill
What is the effect of each
statement on the set of facts?

stmt gen kill

x = a + b

y = a * b

a + b

a * b

a = a + 1
a + b
a * b
a + 1a  1



Computing Available Expressions

{a + b}

{a + b, a * b}
{a + b}

{a + b}{a + b, a * b}

Ø

{a + b}
{a + b}

Ø

{a + b}{a  b}



Terminologygy

•A join point is a program point where two branches A join point is a program point where two branches 
meet

•Available expressions is a forward  must problem•Available expressions is a forward, must problem

• Forward = Data Flow from in to out

M t  At j i t i t  t  t h ld  ll • Must = At joint point, property must hold on all 
paths that are joined.



Data Flow Equationsq

• Let s be a statement

• succ(s) = {immediate successor statements of s}
• Pred(s) = {immediate predecessor statements of s}
• In(s) program point just before executing s• In(s) program point just before executing s
• Out(s) = program point just after executing s

• In(s) = I s’ ∈ pred(s) Out(s’)( ) s  ∈ pred(s) ( )

• Out(s) = Gen(s) ∪ (In(s) – Kill(s))

• Note these are also called transfer functions



Liveness Analysisy

•A variable v is live at a program point p if •A variable v is live at a program point p if 

• v will be used on some execution path 
originating from p before v is overwrittenoriginating from p before v is overwritten

•Optimizationp

• If a variable is not live, no need to keep it 
in a registerg

• If a variable is dead at assignment, can 
eliminate assignment.g



Data Flow Equationsq

• Available expressions is a forward must analysis
• Data flow propagate in same direction as CFG edges
• Expression is available if available on all paths

•Liveness is a backward may problem
• to kow if variable is live  need to look at future uses• to kow if variable is live, need to look at future uses
• Variable is live if available on some path

• In(s) = Gen(s)  ∪ (Out(s) – Kill(s))

• Out(s) = U ’ ( ) In(s’)• Out(s)  U s’ ∈ succ(s) In(s )



Gen and Kill
What is the effect of each
statement on the set of facts?

stmt gen kill

x = a + b

   * b

a, b x

y = a * b

y > a

a, b

a, y

y

a = a + 1 a a



Computing Live Variablesp g

{x}



Computing Live Variablesp g

{x, y, a}

{x}



Computing Live Variablesp g

{x, y, a}

{x}

{x y a}{x, y, a}



Computing Live Variablesp g

{x, y, a}

{x}

{x y a}

{y, a, b}

{x, y, a}



Computing Live Variablesp g

{x, y, a}

{x}{y, a, b}

{x y a}

{y, a, b}

{x, y, a}



Computing Live Variablesp g

{x, y, a, b}

{x}{y, a, b}

{x y a}

{y, a, b}

{x, y, a}



Computing Live Variablesp g

{x, y, a, b}

{x}{y, a, b}

{x y a b}

{y, a, b}

{x, y, a, b}



Computing Live Variablesp g

{x, a, b}

{x, y, a, b}

{x}{y, a, b}

{x y a b}

{y, a, b}

{x, y, a, b}



Computing Live Variablesp g

{a, b}

{x, a, b}

{x, y, a, b}

{x}{y, a, b}

{x y a b}

{y, a, b}

{x, y, a, b}



Very Busy Expressionsy y p

•An expression e is very busy at point p ifp y y p p

• On every path from p, e is evaluated before the
value of e is changed

•Optimization

• Can hoist very busy expression computationy y p p

•What kind of problem?

• Forward or backward?  Backward• Forward or backward?  Backward
• May or must?   Must



Code Hoistingg

• Code hoisting finds expressions that are always Code hoisting finds expressions that are always 
evaluated following some point in a program, 
regardless of the execution path and moves them 
to the latest point beyond which they would always to the latest point beyond which they would always 
be evaluated. 

• It is a transformation that almost always reduces 
the space occupied but that may affect its 
execution time positively or not at allexecution time positively or not at all.



Reaching Definitionsg

•A definition of a variable v is an assignment to vg

•A definition of variable v reaches point p if

Th  i   i t i  i t t  • There is no intervening assignment to v

•Also called def-use information

•What kind of problem?

• Forward or backward? Forward• Forward or backward? Forward

• May or must?  may



Space of Data Flow Analysesp y

May MustMay Must

F d
Reaching Available

Forward
definitions expressions

Li V  bBackward Live

Variables

Very busy

expressions

• Most data flow analyses can be classified this way

• A few don’t fit: bidirectionalA few don t fit: bidirectional

• Lots of literature on data flow analysis



Data Flow Facts and lattices

Typically  data flow facts form a latticeTypically, data flow facts form a lattice

Example, Available expressions

“top”

“bottom”



Partial Orders

•A partial order is a pair (P  � ) such that •A partial order is a pair (P, � ) such that 

• � ⊆ P × P

• � is reflexive: x � x

• � is anti-symmetric: x � y and y � x implies y y y p
x = y

• � is transitive: x � y and y � z implies x � zy y p



Lattices

• A partial order is a lattice if � and � are defined so that

• � is the meet or greatest lower bound operation
x � y � x and x � y � y• x � y � x and x � y � y

• If z � x and z � y then z � x � y

• � is the join or least upper bound operation
• x � x � y and y � x � y 

If x � z and y � z  then x y � z• If x � z and y � z, then x � y � z



Lattices (cont.)( )

A finite partial order is a lattice if meet and join exist 
f   i  f l t

p j
for every pair of elements

A lattice has unique elements bot and top such that

x � ⊥ = ⊥ x � ⊥ =x

           x � 	 = x       x � 	 = 	

In a lattice

x � y iff x � y = x

  iff    x � y iff x � y = y



Useful Lattices
• (2S , ⊆ ) forms a lattice for any set S.

• 2S is the powerset of S (set of all subsets)

• If (S, � ) is a lattice, so is (S,≥ )If (S, � ) is a lattice, so is (S,≥ )

• i.e., lattices can be flipped

• The lattice for constant propagation

	

1 2 3 …

	

⊥



Forward Must Data Flow Algorithmg
Out(s) = Gen(s) for all statements s

W = {all statements} (worklist)W = {all statements} (worklist)

Repeat

Take s from WTake s from W

In(s) = I s’ ∈ pred(s) Out(s’)

Temp = Gen(s) ∪ (In(s) Kill(s))Temp = Gen(s) (In(s) – Kill(s))

If (temp != Out (s)) {

Out(s) = tempOut(s) = temp

W = W ∪ succ(s)

}}

Until W = ∅



Monotonicityy

• A function f on a partial order is monotonic ifA function f on a partial order is monotonic if

x � y implies f(x) � f(y)

• Easy to check that operations to compute In and    
Out are monotonic

• In(s) = I s’ ∈ pred(s) Out(s’)

• Temp = Gen(s) ∪ (In(s) – Kill(s))

• Putting the two together

• Temp = fs (I s’ ∈ pred(s) Out(s’))



Termination

•We know algorithm terminates because•We know algorithm terminates because

•The lattice has finite height

•The operations to compute In and Out are 
monotonic

•On every iteration we remove a statement 
from the worklist and/or move down the 
l ttilattice.


